ミニロト実戦結果

実戦!ミニロトチャレンジ【第1100回】🎃2020/10/27抽せん

大はずれ
記事内に商品プロモーションを含む場合があります

外れモンスター! shirono-j🤠です。

今週は夢を見たから、いつもと少し違うかも。

誰かとトランプで勝負をしていた。
最後にきわどい選択をして「ハートのA」を引いて大勝利。

そんな夢を見て飛び起きた。
「これは何かの予感かもしれない」と燃え上がり、早朝暗いうちからセッセと予想しました。夜にする予定だったのに。(笑)

これで当たったら、ホントびっくりだな!😃

〖購入実績1100〗ミニロト予想

ミニロト予想表;1100

今週はエライ事になったな。

今までずっと避けてきた①②③のそろい踏みがある。

先週の反省で、①の封印は止めるって決めてるしな。

おまけに「ハートのA」を引いた夢までみた。仕方ない。

もひとつおまけに、第221回で1度当選している並びも入っちゃったんだよな~。(予想C)
不思議尽くしの回だな。

これで今回当選してたら、スピリチュアル的なものを信じたくなってくるな~。
心配ないか。むしろ望むところや。

心配なのは⑤が出目ること。
結構迷った末に外したから逃げられるとダメージがでかい。

あとは、
「各week数の大きさ」が相応なパターンで固めたから、逆をつからたら痛いな。

まあ今週も、予想コンセプト変更の初期流動期間。いろいろあるさ!🤠

【実戦結果1100】ミニロト反省

ミニロト結果表;1100

今週はイエローパターンだったか。

そこが外れたのも悔しいけど、⑬と㉕と㉗を外したのが情けないな~。

けど、しょうがないとこもあるんだよね~。予想の軸が前回の1等だから。

先に①と⑭と㉓を決めて、それぞれに相性の良い数字をチョイスする方式だからね。

注目すべきは、オレンジパターンまたはピンクパターンを当てた時に、どうなっているかやね。

まだまだチャレンジとテストは続く。🤠

【13年間の成績表】ミニロト実績

ミニロト成績表;1100

今週のひと言

お金が無くなったら、ミニロトや宝くじもなくなるんだろうね。

意味なくなるもんね。

残念かと言えばそうでもない。ホントにお金も無くなるならね。

お金が無い世の中なんて想像もできないな。どうなるんだろ。

最近は「お金がお金を産む」とか「複利がどうのこうの」とか、わかり難いというか、若いうちから投資しないと大損するぞ!って言われてももう年喰ってるし。

世の中は経済成長する一方で、株価は長期的にみれば絶対に上がるとか、ほんとかよ~って思う。

それは「今」目線の、数百年ていどのデータでしょ。

ホントのところ、どうなんでしょうね。

我迷う。🤠

スポンサーリンク

直近50回の発生データ

直近50回分のデータを羅列。毎週更新していて、「前回の1等」や「前々回の1等」の出現状況を『色』で表現してある。


色の意味に興味のある方はコチラ → 直近2回での出現(色のパターン)

統計データ掲示板

ミニロトのために統計の勉強中。少しでも1等当せんへ近づけないか、何とか攻略できないものかと必死にやってる。

勉強した知恵を利用して整理した、最新のデータをここに公開。アホかと思われるかもですが、勝てば官軍。正義が勝つのではなく、勝った者が正義なのだ!

がんばって、最後に勝つ!🤠

度数分布表;全31数字×桁別

全31数字の発生頻度を「桁別」でカウントして整理した集計表。

「計」と「発生率」の列では、

  • 平均以上値=ピンク枠で太字
  • 最大値=青枠で太字
  • 最小値=緑枠で細字
  • その他=白枠で細字

となっている。

出現度数;ヒストグラム

出目頻度のヒストグラム(度数分布)を「桁別」で書き出したもの。


ピンクの部分が「桁ごと」の度数を表し、グレーの部分は全体を表わす。

第1回から現在までの「全抽せんデータ」で分析してグラフ化した。右側の図は 最近勉強した「箱ひげ図」

度数分布に関しての理解程度はコチラを参照。→ クリック↗

気付いた点としては、

  • 桁別なら正規分布に近い
  • 5桁目はバラツキが小さい

移動平均と合わせ見ても5桁目はバラツキが小さ目だ。理論的には1桁目と同じはずなんだけどなぁ。よく解らんけどせっかくだから予想へ利用している。

移動平均;折れグラフ

出目頻度の移動平均を「桁別」にとってグラフ化したもの。

過去201回分の移動平均を連続させた 折れ線グラフにしています。

  1. 最新~ n=8レンジ(8回移動平均)
  2. 最新~ n=17レンジ(17回移動平均)
  3. 最新~ n=32レンジ(32回移動平均)

の3種類を、ひとつのグラフに重ね合わせている感じです。

移動平均に関しての理解程度はコチラを参照ください。→ クリック↗

気付い点としては、

  • 1桁目から5桁目へ向かうにつれてバラツキが小さくなる
  • 移動平均でみれば、どの桁も「バラツキ幅≒7」ていど

といったところ。どの桁もバラツキは同じはずなのに、5桁目が明らかに小さいのが不思議。